12099

11122 3 Hours / 100 Marks Seat No. Instructions - (1) All Questions are compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4) Figures to the right indicate full marks. (5) Assume suitable data, if necessary. (6) Use of Non-programmable Electronic Pocket Calculator is permissible.

1. a) Attempt any <u>SIX</u> of the following:

- (i) Represent Otto cycle and Diesel cycle on PV diagram.
- (ii) Write limitations of tidal power plant.
- (iii) What are the nodes of heat transfer give examples?
- (iv) (1) Define dryness fraction of steam.
 - (2) Define degree of super heat.
- (v) Define Fouriers law.
- (vi) Write Dulongs formula and state its use.
- (vii) What is the purpose of inter cooling in air compressor.
- (viii) State Boyle's law and Charle's law.

12

b) Attempt any <u>TWO</u> of the following:

- (i) Point out the parameters involved in the site selection of thermal power plant.
- (ii) Explain construction and working of closed cycle gas turbine.
- (iii) Determine the condition of steam in the following cases.
 - (1) At a pressure of 10 bar and temperature 210°C.
 - (2) At pressure of 11 bar and volume $0.174 \text{ m}^3/\text{kg}$.

2. Attempt any <u>TWO</u> of the following:

- a) With sketch explain working of Loeffler boiler.
- b) Explain geothermal power plant. State its advantages and limitations.
- c) 0.5kg of air is compressed reversibly and adiabatically from 80KPa, 60°C to 0.4MPa and is then expanded at constant pressure to the original volume. Sketch these process on PV and TS planes. Compute the heat transfer for the whole path.

3. Attempt any <u>TWO</u> of the following:

- a) Explain in brief the factors affecting volumetric efficiency of reciprocating air compressor.
- b) Explain the working of Dual combustion cycle with PV diagram. Also state the formula for its air standard efficiency.
- c) Explain turbo prop engine with sketch.

4. Attempt any <u>TWO</u> of the following:

- a) Explain with sketch working of Junker's gas calorimeter.
- b) Differentiate between reciprocating and rotary compressor.
- c) Explain with sketch working of surface condenser.

8

16

16

16

Marks

5. Attempt any <u>TWO</u> of the following:

16

- a) Explain with sketch working of solar power plant.
- b) Define the terms and give units:
 - (i) Thermal conductivity
 - (ii) Thermal resistance
 - (iii) Heat transfer coefficient
 - (iv) Emissivity
- c) A sample of coal has the following composition by mass Carbon 80%, Hydrogen 5%, Oxygen 6%, Nitrogen 2.5%, Sulphur 1.5% and Ash 5%. Calculate HCV and LCV per kg of coal.

6. Attempt any <u>TWO</u> of the following:

16

- a) (i) Give the classification of air compressors.
 - (ii) Enlist various uses of compressed air.
- b) Calculate the quantity of heat required to produce 1 kg of steam at a pressure of 5 bar and temperature of 25°C under the following conditions.
 - (i) When the steam is wet with x = 0.9
 - (ii) When the steam is dry saturated
 - (iii) When it is superheated at constant pressure at 250°C Assume:

 $\frac{CP}{\text{Super steam}} = \frac{2.3 \text{kJ}}{\text{kg/c}}$

c) Compare:

- (i) Liquid fuels and gaseous fuels
- (ii) Ultimate analysis and proximate analysis

3 Hours / 100 Marks